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Abstract
In order for an autonomous military robot to
“appropriately” navigate through a complex
environment, it must have an in-depth understanding
of the immediate surroundings.  In the military
sense, appropriate navigation implies the robot will
avoid collision or contact with hazards, will not be
falsely re-routed around traversible terrain due to
false hazard detections, and will exploit the terrain
to maximize its concealment.  Appropriate
autonomous navigation requires the ability to detect
and localize critical features in the environment in
order to respond appropriately to them. We have
developed a scene understanding system based on a
multi-sensor system that uses an “operator-trained”
rulebase to analyze the pixel level attributes across
the set of diverse phenomenology imaging sensors.
Each pixel is registered to range information so we
not only know what but where features are in the
environment.  This three dimensional labeled world
model can then be used to control the speed and
steering of the vehicle in an appropriate manner. In
this paper we discuss our multi-sensor system, the
operator trained analysis algorithm called ONAV
(Opportunistic NAVigation), and the reactive
control algorithm used to control the speed and
steering of the vehicle.

1. Introduction

A great deal of technology has to be developed in
order to achieve the goal of developing a fully
autonomous vehicle.  One of the main “tall poles”
that must be overcome in order for this goal to come
to fruition is the ability of the computer to
understand its surrounding environment to a level
that is required for the intended task.  The military
mission scenario requires a robot to interact in a

complex, unstructured, dynamic environment.

2. Mobility Requirements

The military scenario target operating environment
is the battlefield.  A robotic vehicle must function in
daytime and nighttime and in a variety of reduced
visibility conditions such as fog, dust, smoke and
airborne precipitation.  This operating environment
imposes challenging requirements on the computer
vision system especially since the system must
function with a high degree of reliability, robustness
and safety in this diversity. Changes in operating
conditions can be immediate or gradual.  Immediate
changes can occur because the robot is moving and
interacting in the environment and can encounter
condition transitions such as moving from direct
sunlight to shade.  The movement of the robot in the
environment also causes the robot to see features
from different aspect views.  For instance, the robot
must be able to identify a vehicle whether it is
viewing it from the front, side or rear.  Gradual
condition and environment changes occur at
different time scales.  In the course of a day, the
lighting can change because clouds block the sun or
the daytime transitions to nighttime.  In the seasonal
cycle of a year, sun angles vary and the environment
can take on a completely different look from heavy
green foliage to leafless trees and brown grass.  With
all of these challenges in mind, one must not forget
that the main purpose of the computer vision system
is to visually servo the robot in the environment for
safe autonomous control that achieves human level
control performance.  This imposes a real-time
requirement on the computer vision system.  The
speed requirements for a robotic military vehicle are
20mph off-road and 40mph on-road in daylight, and
10mph off-road and 20mph on-road at nighttime or
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degraded visibility conditions.  This translates to a
cycle rate of 10Hz for 20mph and 20-25Hz for
40mph [1].  The higher cycle rates for 40mph on-
road operation will be achieved by focusing the
processing on a restricted set of environmental
features augmented with the use of obstacle
detection radars to detect obstructions in the
roadway.

3. Approach

We have applied a systems philosophy to the
computer vision problem, and we have designed a
system called ONAV (Opportunistic NAVigation)
that can harness all of the computer vision
technology to date, and combine these approaches
into one integrated system.  In ONAV, no one sub-
component bears the burden of the problem.  In
other words, we do not expect algorithms alone to
solve the computer vision problem.  If we choose
effective sensing that inherently performs some level
of scene discrimination at the phenomenology level,
algorithms will be handed a partially analyzed scene
before they ever encounter the raw image data.  The
algorithms have been designed to exploit an
optimized processing hardware infrastructure, to
maximize computation for the “real-time”
application of autonomous robot navigation.

ONAV will: 1) identify hazards in the scene to
which the robot must avoid, 2) identify beneficial
features with which the robot must interact, and 3)
provide data for route planning over a 50-1000
meter planning horizon.  The application of
computer vision to autonomous robot navigation has
several key characteristics that set it apart from other
computer vision applications, and we have designed
ONAV based on these characteristics.  Since ONAV
is constantly running during a robot traversal of the
terrain, it will have multiple looks, and thus multiple
attempts to analyze approximately the same scene.
In addition, since vehicle response is typically
occurring while the vehicle is moving, the scenes
presented to ONAV are gradually changing.  This
provides ONAV with different perspectives on the
same features in the scene, and different chances on
slightly different input to make a correct
interpretation.  This also allows a scene to be

analyzed over a sequence of images, increasing the
accuracy and certainty of an interpretation.  This
lowers the level of the single frame accuracy
requirement for the autonomous navigation vision
system.

In order to interpret a scene for a particular
application, it is necessary to have distinct
classification categories.  What makes a
classification problem difficult is the similarity of
different categories or lack of separability in
attribute space of these categories.  The
classification categories for autonomous navigation
are typically wide-ranging and have high degrees of
separability between categories.  The categories are
wide-ranging for a particular feature type due to the
fact that fine resolution of categorization is not
required.  For instance, in classifying grass, it is not
necessary to tell the difference between Kentucky
Blue Grass and Fescue, or in classifying a rock it is
not necessary to discriminate between granite and
limestone, only that it is grass or a rock,
respectively.  In both of these classifications, it is
only necessary to classify at a gross level of
resolution.

Generally, separability of features in the
environment occurs naturally for the feature set
required for autonomous navigation.  Typically,
different features in the environment have different
characteristics or else they would be considered the
same feature.  For this reason, humans can identify
and appropriately interact with features in the
environment.  One of the key philosophies of our
design is that we attempt to utilize the same visual
cues as a human driver but for an extended set of
phenomenologies.  For instance a hazardous rock in
view in the grass will have separability from the
grass through the attributes of elevation, spectral
properties, texture, shape, and thermal properties.
Even one of the more traditionally difficult
hazardous features to detect, a negative obstacle,
which is a hole or rut in the terrain, shows up as
intensity and texture discontinuities in visible
imagery and as texture and thermal discontinuities in
thermal imagery.



4. ONAV System Description

ONAV is a culmination of the systems philosophy
applied to the computer vision problem for
autonomous robot navigation.  It involves
algorithms, sensors and processing architecture as
depicted in Figure (1).  The purpose of ONAV is to
provide an infrastructure to combine multiple
sensing modalities, visual cues, and algorithms into

one cohesive system to robustly interpret a scene for
the application of robot navigation.  In this section,
we describe the sensor system, processing
architecture and algorithms that makeup the ONAV
system.

4.1 Sensor System

Most imaging sensors do not have the same wide
operating ranges as the human visual system.  In
order to achieve human level operating ranges and
beyond, the ONAV sensor system was designed
using a two pronged approach:
1) optimize the data from each individual sensor

using environmental sensing,
2) integrate diverse sensor phenomenologies

sensors with independent operating ranges into

one “system” so when combined the individual
operating ranges cover the entire extent of the
target operating range for the application.

Figure (2) shows how the union of individual sensor
operating ranges can achieve the required operating
range over all conditions for the application.  Some
of the key environmental conditions that can affect
system performance are illumination, humidity,
airborne precipitation, smoke, haze and fog.  By
selecting a set of sensors such that there is always a
subset that is minimally impacted by extreme
operating condition, useful information about the
environment will always be available for analysis.
For example, if a FLIR is combined with a color
camera, and a range imaging device such as a
scanning laser range finder, there will almost always
be a sensor that works in daylight, nighttime,
precipitation, fog, smoke and haze.  In addition to
the imaging sensors in the ONAV system, it would
also be advantageous to exploit non-imaging sensors
such as RADARS or ultrasonics for hazard
detection.

4.2 Processing Architecture

In addition to using raw sensor data from multiple
sensors, ONAV also makes use of low-level visual
cues such as texture, edges and range.  This presents
multiple problems.  First, many of these low-level
processing cues require extensive computation.
Second, each low-level processed visual cue is a
data band in itself such as the red band in a color

Figure (1): ONAV System

Figure (2): The overlapping of diverse sensor
operating conditions can achieve the desired
operation conditions.



image, and the additional set of processed data
bands, like the raw data bands directly from the
sensors, must be accessible by the ONAV software
task.  This presents issues for data flow and memory
resources.  Third, our processing architecture design
for ONAV is not just for ONAV, but for all of the
other processes in the system such as road-
following, path-following, vehicle tracking,
reconnaissance, surveillance and target acquisition.
With these key issues in mind, the processing
architecture to support ONAV and the other
processes in the system resulted in a distributed
processing architecture with the sensors tied as
closely to the tasks in the architecture that need
them.  The computationally intensive low-level
visual cue processing tasks are allocated to
individual dedicated processors so this data is
available in a real-time manner.  Where ever
possible, there was an attempt minimize bus traffic
and utilize auxiliary buses independent of the main
bus structure to pass data.

4.3 Algorithm
The ONAV software consists of many different
components that will reside on different processors
in the system.  Figure (3) shows the hierarchy of
software in the ONAV system.

The lower level layers of the software hierarchy,
low-level cue processing and image registration,
provide the supporting elements to perform the
scene analysis which takes place in the pixel level
processing layer and up.  In this section we will
summarize the development that has occurred at
each level in the software hierarchy.

4.3.1 Low-Level Visual Cues

It is known that the human visual system makes use
of multiple visual cues in the analysis of a scene.
The importance of this multi-visual cue set is
illustrated by the fact that a one eyed person can
successfully navigate and recognize features in
his/her environment.  With vision in only one eye,
this person loses depth perception based on the
visual cue of binocular disparity.  To compensate for
this loss, this person enhances the importance of
other visual cues that can be gleaned from a scene
such as contrast, color, texture, perspective, shape,
size, motion, and orientation.   ONAV utilizes a
similar set of visual cues to that used by the human
visual system.  The use of multiple visual cues
increases the number of discriminants in the
classification of features in the scene and also
improves the reliability and robustness of the
analysis.  Since many visual cues will be
incorporated into the analysis, a lapse in one cue will
only cause a slight degradation in the performance in
the overall system performance, where a single cue
system would abruptly fail.  Additionally, some of
the low-level visual cues are naturally semi-invariant
to changing conditions in the environment, which
improves analysis performance of the system over a
wider range of operating conditions.

4.3.1.1 Texture

It has been shown in biological vision that texture is
one of the most powerful visual discriminants,
however, the biological system almost never relies
on texture alone to interpret a scene.  ONAV will
also not rely solely on texture to analyze a scene, but
only use it to improve the analysis.   We have
evaluated the following texture analysis techniques
for inclusion into the ONAV system: Co-Occurrence

Figure (3): Software Hierarchy in the ONAV
system.

Figure (4). Homegrown Texture approach a) road
bounded by grass, b) entropy, c) horizontal
transitions, and d) vertical transitions.



Matrices [2], Gabor Filters [3], Markov Models [4],
and some simple “home-grown” techniques.  We
found the simple home-grown techniques worked
best for our application.  Figure (4) shows some
sample analyses using the homegrown texture
approach.

4.3.1.2 Stereo Range

The role of the passive stereo vision system is to
provide a dense set of 3D measurements in front of
the vehicle.  We are using an implementation of
area-based stereo matching provided by the Jet
Propulsion Laboratory [5].  In this implementation,
the disparity between left and right image at a given
pixel is found by searching along the epipolar line
for the pixel with the highest correlation of intensity
values in a window centered at that pixel.  The local
windows are compared using the Sum of Squared
Differences (SSD).  Efficient search is achieved by
first rectifying the images such that the epipolar
lines are parallel to the image scanlines.  We are
currently using an outdated version of a stereo
implementation which runs on a DataCube MV200
at a 2 Hz rate for a 200x70 subimage.  It is not
uncommon for current implementations of stereo on
off-the-shelf hardware to cycle at 10 Hz.  Active
LADAR can also provide this form of data.

4.3.1.2 Specialized Feature Detectors

Certain obstacles such as negative depressions are
difficult to detect with range data alone, and by only
focusing on the range data, a significant amount of
discriminating information is thrown away that
could contribute to the detection of these hazards.
To improve the detection robustness for such
obstacles, we have implemented specialized feature
detectors that will work on any form of intensity
image, be it visible spectrum or thermal.  Examples
of a specialized feature detector are a horizontal or
vertical band detector.  When using a horizontal
band detector to help detect negative obstacles, the
band dimensions need to change with distance from
the vehicle due to the effects of perspective.
Essentially, the band detectors are “sandwich”
difference operators where the absolute difference
between the average of the pixel intensities in the

inner and outer window produce the response from
the operator.  Figure (5) shows the response of the
horizontal and vertical band detectors.

4.3.2 Multi-Sensor Image Registration

In order to make use of multiple imaging sensors for
fusion at the pixel level, it necessary that all of the
imaging sensors be registered.  Since all of our
sensors have their own optics, and their imaging
planes have physical offsets from each other, it is
impossible to obtain an exact registration solution.
For our application we have built an approximate
registration model that will have accuracy down to
several pixels, which in most cases will be
sufficient.  The approximate mathematical
registration model is represented by a quadratic
polynomial with 6 coefficients [6].  The model is
adjusted by adjusting the 6 coefficients.  In this
registration scheme, one sensor is chosen as the
reference sensor, and all pixel locations in the
classifier are within this reference sensor coordinate
system.  Each sensor in the system requires a
registration model to the reference sensor so pixels
from each non-reference can be transformed into the
reference sensor coordinate system.

 4.3.3 Fusion of Data

Computer Vision algorithms typically have to deal
with large amounts of data since a typical color
image of dimensions 640x480 consists of 900K
bytes.  In ONAV where we are dealing with multiple
sensors and multiple visual cues, the issue of dealing
with large amounts of data is even more
exaggerated, and a fusion method is required to
intelligently combine all of this data to produce
useful results. We have developed a fuzzy logic

Figure (5): a) intensity image of negative obstacle,
b) horizontal band operator response, c) fence post,
d) vertical band operator response.

(a) (b)

(d)(c)



rulebase system that encapsulates visual attributes
into rules through a process of “human-guided-
training”.  Our approach was borrowed from the
techniques used to train automated satellite image
analysis systems [6]. The human trained
classification system consists of three layers of
analysis: 1) pixel, 2) region, and 3) relational or
dependencies between feature types.  The learning at
all layers is supervisory in nature and the supervised
learning signal is the identification of terrain features
and types in the scene by the human trainer.  With

this learning model, as the system is exposed to
more sites and conditions, it will be able to classify
more terrain without compromising previously
learned information.  Figure (6) shows pixel analysis
results for a typical scene using three bands of color
data, one band of thermal data, stereo range data,
and the low-level processed texture cue. To this
point most of our effort has been on pixel level
analysis, and we have only just begun to exam
region and relational analysis.

4.3.3.1 Achieving Analysis Robustness

All models have a target range of operability.  This
is also true for the fuzzy logic rulebases built
through the human guided training process described
above.  We have taken a somewhat exhaustive
approach to covering the full range of operating
conditions that ONAV must handle.  Instead of
putting the burden on one rulebase to handle all sets
of conditions, we will have many rulebases, each

tuned to a unique range of operability, and
collectively, the set of rulebases will cover the entire
extent of target operating conditions.

With all of these rulebases for a particular terrain
type, some sort of high-level coordination is
required to manage the system and optimize
performance based on the current set of conditions
and environmental characteristics.  For this we have
designed a Meta-Rulebase-Manager (MRM).  The
MRM has several responsibilities:

- monitor the performance of the individual
rulebases and activate the most applicable to the
current set of conditions

- monitor sensor performance and phase-out or
phase-in sensors as they become operable in the
current set of conditions.

4.3.3.2 Complete Classification Failure

We expect that the classification system will not be
perfect.  We are expecting mis-classifications, and
the possibility of “null” classifications or unknown
classification response.  Our system has inherent
fallbacks built directly into the architecture.  If
ONAV is unable to make a classification, the
fallback will be to use just 3D range information to
navigate the vehicle.  The fallback to poor stereo
range data will be to use the LADAR and radar
system.  With all of these layers of sensor
phenomenologies, the system will be robust, reliable
and safe in a wide range of operating conditions.

Figure (6). Pixel Level Classification Results combining color, thermal and range data.  Row 1: trees and
shadows, Row 2: tall grass, Row 3: rock in grass, Row 4: bush in grass.



5. Navigating with Classification

Once the classified image is generated, it can then be
used to appropriately control the vehicle.  For our
military scenario, appropriate navigation requires
maximizing vehicle concealment and minimizing
mission time, while keeping the vehicle safe at all

times.  We have designed and built a complementary
module called OREACT (Opportunistic Reaction)
that acts as the reactive control backend to ONAV.
OREACT is reactive in the sense that it is
responding to the immediate surrounding without a
notion of a mission goal.  OREACT  takes in the
classified image from ONAV, enters the labeled
imagery into a discretized three dimensional world
model using the registered range information tagged
to each labeled pixel, and evaluates potential
steering directions and speeds against the
appropriate mobility requires.  The control response
from OREACT is a vector representing the scores of
the potential steering directions.  Because the
response from OREACT is not a single steering and
speed response, but a set of valid responses, the
response vector from OREACT must be
superimposed with the response vector from an
additional behavior that provides a specific
motivating steering and speed response such as a
way point follower. Figure (9) shows the three-
dimensional world model built by OREACT with
the labeled data from ONAV along with the viable
steering arcs whose arc lengths are proportional to
the computed safe speed response.

6. Results

Our combined scene analyzer, ONAV, and our
reactive planner, OREACT, robustly avoid hazards,

runs over traversible features such as small bushes
and tall grass, and hugs features such as trees, tall
bushes and rocks that will conceal the vehicle from
an overhead and a ground perspective.  The
integrated system works in a wide variety of lighting
conditions from bright sunlight with lots of shadows
to overcast conditions.  With the appropriate sensors
such as a stereo FLIR system, we will be able to
extend a subset of this capability to night time
operation.  Our current cycle time is about 2
seconds, which is much to slow, but we are planning
on upgrading our processing infrastructure and
expect a cycle time on the order of at least 10-20 Hz.
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